Journal of Magnetic Resonant62,103-108 (2001)

doi:10.1006/jmre.2001.2378, available onlatehttp://www.idealibrary.com ofl D E %

|.®

Cross Correlation between the Dipole—Dipole Interaction and the Curie
Spin Relaxation: The Effect of Anisotropic Magnetic Susceptibility

Ivano Bertini*! Jozef Kowalewski, Claudio Luchinat; and Giacomo Parigi

*CERM and Department of Chemistry, University of Florence, Via L. Sacconi, 6, 1-50019 Sesto FiorentingDiailsipn of Physical Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, SwedenCa&RIM and Department of Agricultural Biotechnology,
University of Florence, P.le delle Cascine 28, 1-50144 Florence, ltaly

E-mail: bertini@cerm.unifi.it; jk@physc.su.se; luchinat@cerm.unifi.it; parigi@cerm.unifi.it

Received January 16, 2001; revised May 11, 2001; published online August 6, 2001

Cross-correlated relaxation caused by the interference of nuclear
dipole—dipole interaction and the Curie spin relaxation (DD-CSR
cross relaxation) is generalized to treat the case of anisotropic mag-
netic susceptibility, including the important case where the latter
originates from zero-field splitting. It is shown that the phenomenon
of DD-CSR cross relaxation is absolutely general and to be ex-
pected under any electronic configuration. The results of the gen-
eralization are presented for a model system, and the consequences
for paramagnetic metalloproteins are illustrated with an example
of cerium(l11)-substituted calbindin. The effects of the magnetic
anisotropy are found to be substantial. © 2001 Academic Press
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large Zeeman splitting. The combined effect of these two prop
erties is the occurrence of a net, thermal equilibrium magneti
moment oriented along the magnetic field. This net magneti
moment (the Curie spin) can interact with nuclear spins anc
as a result of the reorientation of the spin-carrying molecul
with respect to the magnetic field, can provide an extra relax
ation mechanism for each of the spiasndK . This relaxation

mechanism has been proposed by Gueg®), (who called it

Curie spin relaxation, and by Vega and Fiat), who denoted it

as a susceptibility mechanism. More recently, it has been show
that the Curie spin relaxation (CSR) can cross-correlate with th

splitting; Curie relaxation; dipolar interaction. dipolar AK interaction and that this DD—CSR interference can
lead to exactly the same experimental signatures as the DD—CS
interference 22-27).

During the past few years, the DD—CSR interference effect
_ _ . have begun finding applications as possible structural constrair
_ The cross-correlation or interference effects between varigysgy dies of paramagnetic proteins, along with the usual NOI
interactions involving nuclear spins contribute to nuclear SpEbnstraintsZS, 29, paramagnetic pseudocontact shig®)(and

relaxation phenomena in an intriguing way, as was recognizgdiqa| dipolar couplings induced by the anisotropy of mag
many years agol{3). From being a spectroscopic Cur'Os'tyr]etic susceptibility §1-34). In most of the earlier work on the

these phenomena have during the past decade evolved iNtO§p_csR cross correlation, it has been assumed that the sy

portant tools for structural studies of biological macromoleculgg,,, is isotropic in two ways: the overall reorientation of the
(4-13). One category of interference effects is that betweep,,cro)molecule is isotropic (dynamic isotropy) and the mag
the dipole-dipole, DD, interaction and the chemical shieldingic ssceptibility is isotropic (magnetic isotropy). The case o
anisotropy, CSA,Z) which can lead to transfer between the Zegsq g netic anisotropy has been treated briefly (and not fully col
man order and the two-spin ordef4( 19, to differential line  oq4y) by Desvaux and Gochisg). In this article, we treat the

broadening of spin—spin-coupled doublet componetds 17 .ase of magnetic anisotropy in a different way. We describe th
and to relaxation-allowed coherence transid) (A very clever a4y in Section 2 of this paper. lllustrative simulations and ar

application of this DD-CSA interference phenomenon is realy ;e of the consequences of the use of the present theory
ized in transverse relaxation-optimized spectroscopy (TROSY)anthanide-substituted calcium-binding protein are presente
(19). Another interesting cross-correlation effect is that involvi, gection 3.

ing a pair of dipolar interactions in a three-spiKSsystem {).
A special case arises if th@ spin is that of an unpaired elec-
tron (or electrons), with an efficient relaxation mechanism and a

1. INTRODUCTION

2. THEORETICAL

1 To whom correspondence should be addressed at Magnetic Resonance Cewe b.UIld this discussion on two |mportant. reSL,"tS ,Of earlier
ter, Department of Chemistry, University of Florence, Via L. Sacconi, 6, 500 4/0rK. F”'S_L we use the thgory of pargm_agnetlc shifts in systerr
Sesto Fiorentino (FI), Italy. Fax: +39 055 4574271. characterized by magnetic susceptibility of a general form b
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Bleaney 86) and Kurland and McGarved{). Second, we ap- two different cases. First, we can assume that the susceptibili
ply Goldman’s formulationZ) of the DD—CSA cross correlation tensor is isotropic and given by@)
for the case of a rhombic shielding tensor.
Following Bleaney 86) and Kurland and McGarveg{), we Xx = Xy = Xz = Xave = Hon3 02 S(S+ 1). 5]

note that the paramagnetic shift of the resonance frequency of a 3kT
nuclear spin dipole-coupled to an electron spin can be expressegi, o spatial average of the dipolar shift, the pseudocontac
in terms of the rank 2 susceptibility tensor, in general of rhomb'ghift' vanishes in this case as discussed, for example, by Blean
symmetry, and the position of the nucleusinthe coordinatefra%)_ This does not imply, however, that the Curie spin relax-
of the susceptibility tensor with the origin at the paramagnetigion, or the DD-CSR cross correlation does not occur. In fac
metal center. This shift, which we shall in the following call thgne \work on the Curie spin relaxation by Guer@@)(assumes
dipolar shift, can be expressed as a second-rank Cartesian ter?§8{ropic susceptibility. Also, most of the work on the DD-CSR
within principle nine independent elements. Following Vegaandoss correlation reported so far makes use of this isotropic a:
Fiat (21), the dipolar shift Hamiltonian is written in the form g, mntion. In addition, we assume that the reorientation of th

paramagnetic complex can be described as isotropic rotation

H = yala-0 - Bo, [1]  diffusion, with the rank 2 rotational correlation time equatgo

Settingxx = xy = Xz = Xavein EQ. [4] and using the equations
whereya is the magnetogyric ratio for spiA with the spin  from the paper by Goldmar2), we obtain an axially symmetric
operatorl s, Bo is the magnetic field, and the shift tensor caghift tensor with theAo given by
be expressed as

Mo o o S(S+1)

AO’:O'”—O'L:—

P Sy [6]

1
4 Following Goldman 2) we then obtain the following results for
(BX2 —r2)yur > 3Xyxyr = 3XZy,r ~° the difference in the linewidth (in Hz) of the two components
for the A nucleus of theAK doublet:

X 3Xyxxl ™ (By? —r?)yyr=° 3yzy,r —°
3xZxxr ~° 3yzxyr° (322 —r?)xar° Ay 2 <@>2 Boyavk #30enS(S+ 1)
[2] 157 \ 4n r3riK kT
L 3¢ 3cog Ospak— 1
Here,xx, xy, andy; are the principal components of the suscep- x | 4t + T wle? > : [7]
+ WoTe

tibility tensor, x, y, andz are the coordinates of the nucleus with

respect to that principal frame, ands the distange between |, ihe terminology of Goldmang], this corresponds torx .

the nucleusA and the metalS. The shift tensor in Eq. [2] This equation agrees with the result of Ghose and Prestega

can be treated as any other shift or shielding tensor. It can (With getts = hys).2 The angledsax is that between the

decomposed into rank 0, rank 1, and rank 2 irreducible tensSq{g axis and theAS axis. Assuming the electron spin to be

(38, 39. The rank zero component corresponds to the spatiajly5|ized on the metal ion (the point-dipole approximatié, (

averaged pseudocontact shg]: 42)), this latter axis is identical to the nucleds-metal axis.

s 5 by o s o Another assumption inherentin Eq. [7] is that of isotropic, rigid-

pc = i(3x — I xx + @By —r)xy+@Bz° —r )XZ_ 3] body reorientational motion. More realistic models are certainly
Ar 3rs available ¢3) but we judge that this approximation is adequate

. . . . for the purpose of present work.
The rank 1 irreducible tensor (corresponding to the antisym-—ry . ain topic of this paper is the case of anisotropic mag

meric part of the shielding) is not interesting in the preseﬂtet'cs sceptibility. Using Eq. [41in aeneral form. we obtain the
context. The rank 2 irreducible tensor is given by ic susceptibility. Using Eq. [4]in g i :

(3X2 - r2)XXr - Opc 3Xyr75(Xx + Xy)/2 3X2r75(Xx + x2)/2
o= . 3Xyr_5(Xx + Xy)/2 (3y2 - rZ)Xyr S Opc 3yzr_5(Xy + x2)/2 . [4]
3X2r_5(Xx + x2)/2 3yZI’_5(Xy + x2)/2 (322 - rz)er S Opc

The shift tensor components given in this form can be directly
substituted into the CSA Hamiltonian given by GOIdma)] ( 2 Note that Eq. [7] gives the differential linewidth in hertz. In the literature,

_The formulation so far is very ger_le_r_al and independent_ of tR8uations for the additional contribution to the transverse relaxation rate of on
origin and symmetry of the susceptibility tensor. We can discugsonance line are commonly report@d)(
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3. RESULTS AND DISCUSSION

In Fig. 1, we use Eq. [8] to simulate the dependence of the dif
ferential linewidth for theA components of thé K doublet on
the angl®, asbetween the principal axis of the susceptibility ten-
sor and theASaxis. The susceptibility components used in the
simulation are highly anisotropig; = 3xave/2 andyx = xave/2.
The anglés ak between theA K and theASaxes is set to three
values: zero, the magic angle, and 9% ok = 0 corresponds to
The angle®x ax, 6y ax, anddz ax specify the directions of the @ collinear arrangement and the maximum cross-correlation e

principal axeX’, Y', andZ’ of the shift tensor of nucleuwith ~ fect, while the magic angle corresponds to e — 1 =0
respect to theAK axis. The principal axes for the shift tenso@nd no differential linewidth for the isotropic casgak = 90°
are obtained by first calculating the tensor in the principal frang@anges the sign of the cross-correlation spectral density ai
of the susceptibility tensor and then diagonalizing the Symm@[tthe differential linewidth. The isotropic model results do not
ric part which corresponds to the rank 2 irreducible tensor f#Pend o, as the corresponding straight lines are displayed ir
Eq. [4]. the figure for reference. We can see that the effects of the lare
One case that has been discussed by Desvaux and Gogh@gnetic anisotropy are clearly nonnegligible. An interesting
(34), and which can be now fully addressed, is that in whic@xception occurs disak = 90° when theAK vector is within
the magnetic susceptibility anisotropy originates from zero-fief€ Xz plane: the “anisotropic” calculation coincides with the
splitting. Indeed, as discussed by Bleang§)@nd Kurland and “isotropic.”
McGarvey @7), the magnetic susceptibility can, in the terminol- We find it interesting to investigate the consequences of th
ogy of a general spin Hamiltonian, have its origin either in theresent extension of the theory for a realistic protein example
anisotropy of the electronigtensor or in the zero-field splitting. Where the differential linewidths could in principle be used as
In terms of more fundamental interactions, both these phenoiictural constraints. The protein is the cerium(lll)-substitutec
ena are related to the effects of spin—orbit coupling. The casec@icium-binding protein, calbindindp. Parameters characteriz-
anisotropicg tensor is not really controversial, and the relatiofd the magnetic properties of the substituted protein are give
between the andy anisotropy is well understood(). in Table 1. The magnetic anisotropy parameters have been o
The case of the ZFS interaction is more complicated. Desvai@hed from measurements of a large number of pseudoconte
and Gochin state in their workd§) that if the ZFS splitting is Shifts for protein protons4d) and from theyaye value obtained
so strong that it defines the principal quantization axis of ti€om Eq. [5]. The values ofl and g, must replace the val-
electron spin in the molecular frame, then the DD—CSR crod§s ofS andge, respectively, in Egs. [5] and [6]. We combine
correlation vanishes. However, their argumentis valid in the linfft€ data in Table 1 with structural information from NMR data
of zero magnetic field, a limit which is not relevant in the case
of NMR experiments carried out at finite field, independently of

following counterpart of Eq. [7]:
3.

() rrog)
4 1+ wit?

. (O'xf(3 COg Ox'AK — 1)O'Yr(3 CO§ Ov Ak — 1)
+Uz/(3 CO§ Oz pk — 1))

1

Ay = —
157

25, R
BOVéAJ/K (4Tc i
Ak

(8]

the ratio of the strength of the Zeeman and the ZFS interaction
Another proof of this statement using the spin Hamiltonian for- §
malism is presented in the Appendix. In summary, it is theoreti g
cally demonstrated that the DD—CSR cross correlationin a give-g
magnetically anisotropic system is equally strong, independei~,
of the origin of the magnetic anisotropy. &

The discussion so far is valid for the case of a single pararré

agnetic center in a molecule. In the case when a protein contaig = |
several paramagnetic metals, each metal center contributesto s

total magnetic susceptibility tensor. A reasonable generalizatic‘é
of our approach to that case is to consider individual susceptibi§
ity tensors associated with each site and to express the dipol

shift tensor associated with each site by its own term such as

-3

within xz pfane

within xz plane

normal to xz plane

within xz plane z
normal to xz plane

T T T T T T T
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} sk =0
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given by Eqg. [2]. There will thus still be one total dipolar shiftten- riG. 1. Effect of magnetic susceptibility anisotropy on the angular part of
sor, but it will now be given as a sum of contributions from eadhe differential line-broadening effect originated by the DD-CSR cross corre

metal. This total shift tensor will contain a rank 2 componenigtion (Eq. [8]). The effect is shown as a function of the angjlgs between

consisting of a sum of contributions such as given by Eq. [4{]{:.
Also the contributions from each metal to the cross-correlati«p

ez axis of they tensor and the nucleus—metaSvector when theA nucleus
oves from along the axis to along the axis of they tensor, i.e., from the
:ﬂgest to the smallest principal value pf The three situations corresponding

effect (the differential line broadening) will be additive, witho g5, = 0°, 54.74°, and 90 are shown. For the latter two, the two extreme
each metal contributing a term such as given by Eq. [7] or [8fituations ofAK being within or perpendicular to thez plane are also shown.
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TABLE 1
Magnetic Parameters Characterizing the Cerium(l11) lon Bound
to the Calcium-Binding Protein Calbindin Dgy (44)

anisotropy of the magnetic susceptibility becomes now rathe
clear, even if it is still modest. In order to stress further the
shortcomings of the isotropic model, we show in Fig. 2C the
relative percentage deviations of the anisotropic model with re
spect to the isotropic model as a function of the residue numbe
in the protein. One should be aware of the fact that, when we g¢
close to the magic angle (3 & ax — 1 = 0), the differential
. _ _ linewidths become small and even small absolute effects ca
(including NOEs and pseudocontact shifts). For every amig@come large on the relative scale. For this reason, the residu
*H-">N spin pair {H= A, ®N =K, we calculate the proton yith g5, within +5° from the magic angle are not included
coordinates in the metal-fixed susceptibility frame and then tiierig. 2C. The deviations are still substantial, at least for soms
dipolar shift tensor, using Eq. [2]. We symmetrize and diagongksidues. As a consequence, the use of the isotropic susceptik
ize the tensor and calculate the differential linewidth for evef, model in the context of differential linewidths applied as a
proton resonance. We then repeat the calculation assumingdf@ctural constraint may lead to some systematic errors.
susceptibility to be isotropic and plot the “anisotropic” versus
“isotropic” shifts in Fig. 2A. The figure shows only small devia-
tions from a linear relation, and almost no anisotropy effect. The
reason for that is the fact that different protons are at differentA general theoretical treatment has been developed here
distances from the metal, and the® dependence, common inaccount for cross-correlated relaxation caused by interferenc
both models, is by far the most important factor in determinirigetween nuclear dipole—dipole interaction and the Curie spi
the cross-correlation effect. relaxation (DD—CSR cross correlation) in the presence of mag
In Fig. 2B, we show the calculated differential linewidthgetic anisotropy of any origin. The main finding is that the DD—
multiplied by r3, in order to suppress the radial dependendeSR cross correlation in a given magnetically anisotropic sys
and to enhance the role of the angular effects. The effect of tigen is equally strong independently of the origin of magnetic
anisotropy. A consequence of this finding is that lanthanide ions
whose anisotropy arises mostly from zero-field splitting effects

Jce  Qi(ce) Xx Xz

6/7

Xy

5/2 046x103m® 053x103m® 070x 1031 md

4. CONCLUSIONS

g 40 . . :
g 0. A - g 1500 1 B are expected to yield substantial DD—CSR cross correlation,
- E variance with previous predictions. This conclusion is partic-
- 2 o® E 0 - ularly relevant in view of the growing interest in the use of
g 10+ ° g lanthanide ions as paramagnetic substitutes for calcium ions |
g o ¥y 4 2 1500 1 & calcium-binding proteins.
S0 w: ’ Sample calculations based on the known magnetic propertie
) ) > -3000 aP . . . . .
3 0l N . . : ‘ of a cerium(lll)-substituted calcium-binding protein show that
2010 0 10 20 30 40 3000 1500 O 1500 (i) the DD—CSR cross-correlation effect is predicted to be rel-
v (Hertz), isotropic calculation 4, isotropic calculation evant and (ii) the additional perturbation due to the magnetic
100 anisotropy is not negligible when DD—CSR cross-correlation
80 data are to be used for quantitative purposes.
80 [_J
-~ o APPENDIX
2 .&".q

percent difference
[

-100 -

T T

Consider the case when there is only one metal center ar
the electron spin Hamiltonian contains both the Zeeman and tt
ZFS interaction:

0 10 20 30 40 50 60 70

residue number

H=usS - g-By+S-D-S [A1]

FIG.2. DD-CSR cross-correlation effects &H differential line broaden- If the ZFS vanishes, then the elgenState.S t?ecom? the ust
ing predicted for the peptide NH groups of the cerium(lll)-substituted calciur€€Man eigenstateS, ms), and the quantization axis of the
binding protein calbindin Bx. A direct comparison of the differential line broad- electron spin is the laboratomyaxis, defined by the direction
ening predicted using the known anisotrog)(versus that predicted in the of the magnetic field. If the Zeeman interaction vanishes (at th
isotropic approximation is shown in (A), while the corresponding comparisqpmit of zero magnetic field), the eigenstates of the ZFS Hamil-
for the angular part of the effect is shown in (B). Panel (C) illustrates the p?r- . till be labeled ,'th the t ber. but thi
centage deviation of the isotropic model with respect to the anisotropic mode glian can stll be la .e e. wi S q.uan um number, .u IS.

refers now to the projection of the spin on a molecule-fixed axis

a function of the residue number (excluding residues Wwithr 3| < 500A3/s,
which would give even larger deviations). which acts as a quantization axis. We denote the eigenstat
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of the ZFS Hamiltoniar é, Ms). An important feature of the 4. N. Tjandra, A. Szabo, and A. Bax, Protein backbone dynamics'aNd
ZFS Hamiltonian is that the:rhg states are degenerate Thus chemical shift anisotropy from quantitative measurement of relaxation in.
. 2 &~ . ) " terference effectsl. Am. Chem. Sod.18,6886-6891 (1996).
the expectation value @&, for a |S, ms) state isis, but when ) ) )
summing over equilibrium populations of the ZES-split Ievelss' N. Tjandra and A. Bax, Solution NMR measurement of amide proton
g q pop p ' chemical shift anisotropy in®N-enriched proteins. Correlation with

the contributions of pairs of degenerate levels cancel exactly. In hydrogen bond lengtid, Am. Chem. Sod.19,8076-8082 (1997).

other words, the ZFS does not lead to any permanent magneycy, Tjandra and A. Bax, Large variations {#Ca chemical shift anisotropy

moment. in proteins correlate with secondary structudrédm. Chem. So¢19,9576—
The Hamiltonian in Eq. [Al] mixes the Zeeman and ZFS 9577 (1997).

eigenstates. The expectation value $f (in the laboratory 7. M. Tessari, H. Vis, R. Boelens, R. Kaptein, and G. W. Vuister, Quantitative

frame), averaged over thermally populated levels, is given by measurement o_f relaxa_ltion interference e_ffects_ betwdtn CSA and
1H-15N dipolar interaction: Cross correlation with secondary structure,

J. Am. Chem. S0&.19,8985-8990 (1997).

[A2] 8. M. Tessari, F. A. Mulder, R. Boelens, and G. W. Vuister, Determination of
amide proton CSA if°N-labeled proteins usingH CSAASN-H dipolar
and®®N CSAASN-H dipolar cross-correlation ratel,Magn. Resorl27,

. . . . . 128-133 (1997).
wherej labels the 3+ 1 eigenstates of the Hamiltonian. This _ (1997) _ . _
B. Reif, M. Hennig, and C. Griesinger, Direct measurement of angles

expectation value is not identical to the Zeeman_on_ly Casg’ between bond vectors in high resolution NM&gience276,1230-1233
(S) = —Getts S+ 1)Bo/3KT, because the ZFS may displace (1997).
the relative energies of differedtms doublets.(S,) is related 10. I. C. Felli, C. Richter, C. Griesinger, and H. Schwalbe, Determination of

Zj (Szyj>e—Ej/kT

(&) = W,

to the magnetic susceptibility b39) RNA sugar pucker mode from cross-correlated relaxation in solution NMR
spectroscopy]. Am. Chem. S0d21,1956-1957 (1999).
_ OeltoB (S) [A3] 11. D.W. Yang, R. Konrat, and L. E. Kay, A multidimensional NMR experiment
- By ’ for measurement of the protein dihedral angléased on cross-correlated

relaxation between (#-'3Co)—H dipolar and'3C’ (carbonyl) chemical

Desvaux and Gochin state in their pap88)(that if the ZFS ?fg;g”'smpy mechanismsl. Am. Chem. Socl19, 11938-11940
dom!nates overthe Zeeman mtera_ctlon, t_hen the_cross-tlme o w. vang, K. H. Gardner, and L. E. Kay, A sensitive pulse scheme
relation function between th&K d|p0|ar interaction and the for measuring the backbone dihedral anglebased on cross-correlation
Curie spin vanishes because of the fact thatS3kein is locked between 13Ca—'Ha dipolar and carbonyl chemical shift anisotropy,
in the molecular frame, which leads to a product of the Wigner J. Biomol. NMRL1, 213-220 (1998).

rotation matrices of different ranks. While this is true at the limit3. P. Pellupessy, E. Chiarparin, R. Ghose, and G. Bodenhausen, Simultanec
of zero magnetic field, itis not true ifthe magnetic field is present. determination ofy and ¢ angles in proteins from measurements of
If the field is present, then there will be a nonzé&) along cross-correlated relaxation effecisBiomol. NMR14, 277-280 (1999).

the field direction, given by Eq. [A2], whose interaction witht# &- Jaccard. S. Wimperis, and G. Bodenhausen, Observatidg &f drder
in NMR relaxation studies for measuring cross-correlation of chemical

the nuclear spin is modulated by rotation of the molecules in a gy anisotropy and dipolar interactior@hem. Phys. Lettl38, 601—606

similar way as in the Zeeman-only case and, assuming isotropic(1987).

reorientation, in the same way as thi€é dipolar interaction. This 15. L. Di Bari, J. Kowalewski, and G. Bodenhausen, Magnetization trans-

argument leads, after some straightforward algebra, to Eq. [8] fer modes in scalar-coupled spin systems investigated by selectiv

for the differential linewidth due to DD—CSR cross correlation. 2-dimensional nuclear magnetic resonance exchange experiment
J. Chem. Phy3,7698-7705 (1990).

16. T. C. Farrar and R. A. Quintero-Arcaya, A detailed study of differential
line broadening in a coupled AX, spiry4, spin %2 systemChem. Phys.
Lett. 122,41-45 (1985).
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