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Cross-correlated relaxation caused by the interference of nuclear
dipole–dipole interaction and the Curie spin relaxation (DD–CSR
cross relaxation) is generalized to treat the case of anisotropic mag-
netic susceptibility, including the important case where the latter
originates from zero-field splitting. It is shown that the phenomenon
of DD–CSR cross relaxation is absolutely general and to be ex-
pected under any electronic configuration. The results of the gen-
eralization are presented for a model system, and the consequences
for paramagnetic metalloproteins are illustrated with an example
of cerium(III)-substituted calbindin. The effects of the magnetic
anisotropy are found to be substantial. C© 2001 Academic Press

Key Words: cross correlation; magnetic anisotropy; zero-field
splitting; Curie relaxation; dipolar interaction.
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1. INTRODUCTION

The cross-correlation or interference effects between var
interactions involving nuclear spins contribute to nuclear s
relaxation phenomena in an intriguing way, as was recogn
many years ago (1–3). From being a spectroscopic curiosit
these phenomena have during the past decade evolved int
portant tools for structural studies of biological macromolecu
(4–13). One category of interference effects is that betw
the dipole–dipole, DD, interaction and the chemical shield
anisotropy, CSA, (2) which can lead to transfer between the Ze
man order and the two-spin order (14, 15), to differential line
broadening of spin–spin-coupled doublet components (16, 17)
and to relaxation-allowed coherence transfer (18). A very clever
application of this DD–CSA interference phenomenon is re
ized in transverse relaxation-optimized spectroscopy (TRO
(19). Another interesting cross-correlation effect is that invo
ing a pair of dipolar interactions in a three-spinAKSsystem (1).
A special case arises if theS spin is that of an unpaired elec
tron (or electrons), with an efficient relaxation mechanism an
1 To whom correspondence should be addressed at Magnetic Resonance
ter, Department of Chemistry, University of Florence, Via L. Sacconi, 6, 500
Sesto Fiorentino (FI), Italy. Fax: +39 055 4574271.
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large Zeeman splitting. The combined effect of these two pr
erties is the occurrence of a net, thermal equilibrium magn
moment oriented along the magnetic field. This net magn
moment (the Curie spin) can interact with nuclear spins a
as a result of the reorientation of the spin-carrying molec
with respect to the magnetic field, can provide an extra re
ation mechanism for each of the spinsA andK . This relaxation
mechanism has been proposed by Gueron (20), who called it
Curie spin relaxation, and by Vega and Fiat (21), who denoted it
as a susceptibility mechanism. More recently, it has been sh
that the Curie spin relaxation (CSR) can cross-correlate with
dipolar AK interaction and that this DD–CSR interference c
lead to exactly the same experimental signatures as the DD–
interference (22–27).

During the past few years, the DD–CSR interference effe
have begun finding applications as possible structural constr
in studies of paramagnetic proteins, along with the usual N
constraints (28, 29), paramagnetic pseudocontact shifts (30), and
residual dipolar couplings induced by the anisotropy of m
netic susceptibility (31–34). In most of the earlier work on th
DD–CSR cross correlation, it has been assumed that the
tem is isotropic in two ways: the overall reorientation of t
(macro)molecule is isotropic (dynamic isotropy) and the m
netic susceptibility is isotropic (magnetic isotropy). The case
magnetic anisotropy has been treated briefly (and not fully
rectly) by Desvaux and Gochin (35). In this article, we treat the
case of magnetic anisotropy in a different way. We describe
theory in Section 2 of this paper. Illustrative simulations and
example of the consequences of the use of the present theo
a lanthanide-substituted calcium-binding protein are prese
in Section 3.

2. THEORETICAL

We build this discussion on two important results of ear
work. First, we use the theory of paramagnetic shifts in syst
characterized by magnetic susceptibility of a general form
3 1090-7807/01 $35.00
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The main topic of this paper is the case of anisotropic mag-
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Bleaney (36) and Kurland and McGarvey (37). Second, we ap
ply Goldman’s formulation (2) of the DD–CSA cross correlatio
for the case of a rhombic shielding tensor.

Following Bleaney (36) and Kurland and McGarvey (37), we
note that the paramagnetic shift of the resonance frequency
nuclear spin dipole-coupled to an electron spin can be expre
in terms of the rank 2 susceptibility tensor, in general of rhom
symmetry, and the position of the nucleus in the coordinate fr
of the susceptibility tensor with the origin at the paramagn
metal center. This shift, which we shall in the following call t
dipolar shift, can be expressed as a second-rank Cartesian t
with in principle nine independent elements. Following Vega
Fiat (21), the dipolar shift Hamiltonian is written in the form

H = γA IA · σ · B0, [1]

whereγA is the magnetogyric ratio for spinA with the spin
operatorIA, B0 is the magnetic field, and the shift tensor c
be expressed as

σ = 1

4π

×


(3x2− r 2)χxr−5 3xyχyr−5 3xzχzr−5

3xyχxr−5 (3y2− r 2)χyr−5 3yzχzr−5

3xzχxr−5 3yzχyr−5 (3z2− r 2)χzr−5

 .
[2]

Here,χx, χy, andχz are the principal components of the susc
tibility tensor,x, y, andzare the coordinates of the nucleus w
respect to that principal frame, andr is the distance betwee
the nucleusA and the metalS. The shift tensor in Eq. [2
can be treated as any other shift or shielding tensor. It ca
decomposed into rank 0, rank 1, and rank 2 irreducible ten
(38, 39). The rank zero component corresponds to the spat
averaged pseudocontact shift (39):

σpc = 1

4π

(3x2− r 2)χx + (3y2− r 2)χy + (3z2− r 2)χz

3r 5
. [3]

The rank 1 irreducible tensor (corresponding to the antis

meric part of the shielding) is not interesting in the present
context. The ran

origin and symm

e

k 2 irreducible tensor is given by

σ = 1

4π


(3x2− r 2)χxr−5− σpc 3xyr−5(χx + χy)/2 3xzr−5(χx + χz)/2

3xyr−5(χx + χy)/2 (3y2− r 2)χyr−5− σpc 3yzr−5(χy + χz)/2

 . [4]

netic susceptibility. Using Eq. [4] in general form, we obtain th
5(χy + χz)/2 (3z2− r 2)χzr−5− σpc

tly

the
2 Note that Eq. [7] gives the differential linewidth in hertz. In the literature,

equations for the additional contribution to the transverse relaxation rate of one
3xzr−5(χx + χz)/2 3yzr−

The shift tensor components given in this form can be direc
substituted into the CSA Hamiltonian given by Goldman (2).

The formulation so far is very general and independent of

etry of the susceptibility tensor. We can discu
ET AL.
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two different cases. First, we can assume that the suscepti
tensor is isotropic and given by (40)

χx = χy = χz = χave= µ0µ
2
Bg2

e

S(S+ 1)

3kT
. [5]

The spatial average of the dipolar shift, the pseudocon
shift, vanishes in this case as discussed, for example, by Ble
(36). This does not imply, however, that the Curie spin rela
ation or the DD–CSR cross correlation does not occur. In f
the work on the Curie spin relaxation by Gueron (20) assumes
isotropic susceptibility. Also, most of the work on the DD–CS
cross correlation reported so far makes use of this isotropic
sumption. In addition, we assume that the reorientation of
paramagnetic complex can be described as isotropic rotat
diffusion, with the rank 2 rotational correlation time equal toτc.
Settingχx = χy = χz = χave in Eq. [4] and using the equation
from the paper by Goldman (2), we obtain an axially symmetric
shift tensor with the1σ given by

1σ = σ‖ − σ⊥ = µ0

4π
µ2

Bg2
e

S(S+ 1)

r 3kT
. [6]

Following Goldman (2) we then obtain the following results fo
the difference in the linewidth (in Hz) of the two componen
for the A nucleus of theAK doublet:

1ν = 2

15π

(
µ0

4π

)2 B0γ
2
AγKµ

2
Bg2

eh- S(S+ 1)

r 3r 3
AKkT

×
(

4τc + 3τc

1+ ω2
0τ

2
c

)
3 cos2 θSAK− 1

2
. [7]

In the terminology of Goldman (2), this corresponds to 2η/π .
This equation agrees with the result of Ghose and Preste
(27) (with geµB = h- γS).2 The angleθS AK is that between the
AK axis and theAS axis. Assuming the electron spin to b
localized on the metal ion (the point-dipole approximation (41,
42)), this latter axis is identical to the nucleusA–metal axis.
Another assumption inherent in Eq. [7] is that of isotropic, rig
body reorientational motion. More realistic models are certa
available (43) but we judge that this approximation is adequ
for the purpose of present work.
ssresonance line are commonly reported (27).
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following counterpart of Eq. [7]:

1ν = 1

15π

(
µ0

4π

)
B0γ

2
AγK h-

r 3
AK

(
4τc + 3τc

1+ ω2
0τ

2
c

)
· (σX′ (3 cos2 θX′AK − 1)σY′ (3 cos2 θY′AK − 1)

+ σZ′ (3 cos2 θZ′AK − 1)). [8]

The anglesθX′AK , θY′AK , andθZ′AK specify the directions of th
principal axesX′, Y′, andZ′ of the shift tensor of nucleusAwith
respect to theAK axis. The principal axes for the shift tens
are obtained by first calculating the tensor in the principal fra
of the susceptibility tensor and then diagonalizing the symm
ric part which corresponds to the rank 2 irreducible tenso
Eq. [4].

One case that has been discussed by Desvaux and G
(34), and which can be now fully addressed, is that in wh
the magnetic susceptibility anisotropy originates from zero-fi
splitting. Indeed, as discussed by Bleaney (36) and Kurland and
McGarvey (37), the magnetic susceptibility can, in the termin
ogy of a general spin Hamiltonian, have its origin either in
anisotropy of the electronicg tensor or in the zero-field splitting
In terms of more fundamental interactions, both these phen
ena are related to the effects of spin–orbit coupling. The ca
anisotropicg tensor is not really controversial, and the relat
between theg andχ anisotropy is well understood (40).

The case of the ZFS interaction is more complicated. Des
and Gochin state in their work (35) that if the ZFS splitting is
so strong that it defines the principal quantization axis of
electron spin in the molecular frame, then the DD–CSR c
correlation vanishes. However, their argument is valid in the l
of zero magnetic field, a limit which is not relevant in the c
of NMR experiments carried out at finite field, independentl
the ratio of the strength of the Zeeman and the ZFS interact
Another proof of this statement using the spin Hamiltonian
malism is presented in the Appendix. In summary, it is theo
cally demonstrated that the DD–CSR cross correlation in a g
magnetically anisotropic system is equally strong, indepen
of the origin of the magnetic anisotropy.

The discussion so far is valid for the case of a single par
agnetic center in a molecule. In the case when a protein con
several paramagnetic metals, each metal center contributes
total magnetic susceptibility tensor. A reasonable generaliza
of our approach to that case is to consider individual suscep
ity tensors associated with each site and to express the d
shift tensor associated with each site by its own term suc
given by Eq. [2]. There will thus still be one total dipolar shift te
sor, but it will now be given as a sum of contributions from e
metal. This total shift tensor will contain a rank 2 compone
consisting of a sum of contributions such as given by Eq.
Also the contributions from each metal to the cross-correla
effect (the differential line broadening) will be additive, w

each metal contributing a term such as given by Eq. [7] or [8
TED RELAXATION 105
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3. RESULTS AND DISCUSSION

In Fig. 1, we use Eq. [8] to simulate the dependence of the
ferential linewidth for theA components of theAK doublet on
the angleθz ASbetween the principal axis of the susceptibility te
sor and theASaxis. The susceptibility components used in
simulation are highly anisotropic,χz= 3χave/2 andχx =χave/2.
The angleθS AK between theAK and theASaxes is set to thre
values: zero, the magic angle, and 90◦. θS AK= 0 corresponds to
a collinear arrangement and the maximum cross-correlatio
fect, while the magic angle corresponds to 3 cos2 θS AK− 1= 0
and no differential linewidth for the isotropic case.θS AK = 90◦

changes the sign of the cross-correlation spectral density
of the differential linewidth. The isotropic model results do n
depend onθz AS; the corresponding straight lines are displaye
the figure for reference. We can see that the effects of the
magnetic anisotropy are clearly nonnegligible. An interes
exception occurs atθS AK = 90◦ when theAK vector is within
the xz plane: the “anisotropic” calculation coincides with t
“isotropic.”

We find it interesting to investigate the consequences o
present extension of the theory for a realistic protein exam
where the differential linewidths could in principle be used
structural constraints. The protein is the cerium(III)-substitu
calcium-binding protein, calbindin D9k. Parameters characteri
ing the magnetic properties of the substituted protein are g
in Table 1. The magnetic anisotropy parameters have bee
tained from measurements of a large number of pseudoco
shifts for protein protons (44) and from theχave value obtained
from Eq. [5]. The values ofJ and gJ must replace the val
ues ofS andge, respectively, in Eqs. [5] and [6]. We combin
the data in Table 1 with structural information from NMR da

FIG. 1. Effect of magnetic susceptibility anisotropy on the angular par
the differential line-broadening effect originated by the DD–CSR cross co
lation (Eq. [8]). The effect is shown as a function of the angleθz AS between
thez axis of theχ tensor and the nucleus–metalASvector when theA nucleus
moves from along thez axis to along thex axis of theχ tensor, i.e., from the
largest to the smallest principal value ofχ . The three situations correspondin
].
S AK

situations ofAK being within or perpendicular to thexzplane are also shown.
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TABLE 1
Magnetic Parameters Characterizing the Cerium(III) Ion Bound

to the Calcium-Binding Protein Calbindin D9k (44)

JCe gJ(Ce) χx χy χz

5/2 6/7 0.46× 10−31 m3 0.53× 10−31 m3 0.70× 10−31 m3

(including NOEs and pseudocontact shifts). For every am
1H–15N spin pair (1H= A, 15N= K ), we calculate the proton
coordinates in the metal-fixed susceptibility frame and then
dipolar shift tensor, using Eq. [2]. We symmetrize and diagon
ize the tensor and calculate the differential linewidth for eve
proton resonance. We then repeat the calculation assumin
susceptibility to be isotropic and plot the “anisotropic” vers
“isotropic” shifts in Fig. 2A. The figure shows only small devia
tions from a linear relation, and almost no anisotropy effect. T
reason for that is the fact that different protons are at differ
distances from the metal, and ther−3 dependence, common i
both models, is by far the most important factor in determin
the cross-correlation effect.

In Fig. 2B, we show the calculated differential linewidth
multiplied by r 3, in order to suppress the radial dependen
and to enhance the role of the angular effects. The effect of

FIG. 2. DD–CSR cross-correlation effects on1H differential line broaden-
ing predicted for the peptide NH groups of the cerium(III)-substituted calciu
binding protein calbindin D9k. A direct comparison of the differential line broad
ening predicted using the known anisotropy (44) versus that predicted in the
isotropic approximation is shown in (A), while the corresponding compari
for the angular part of the effect is shown in (B). Panel (C) illustrates the
centage deviation of the isotropic model with respect to the anisotropic mod
a function of the residue number (excluding residues with|1νr 3| < 500Å3/s,

which would give even larger deviations).
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anisotropy of the magnetic susceptibility becomes now rat
clear, even if it is still modest. In order to stress further t
shortcomings of the isotropic model, we show in Fig. 2C t
relative percentage deviations of the anisotropic model with
spect to the isotropic model as a function of the residue num
in the protein. One should be aware of the fact that, when we
close to the magic angle (3 cos2 θS AK− 1= 0), the differential
linewidths become small and even small absolute effects
become large on the relative scale. For this reason, the resi
with θS AK within ±5◦ from the magic angle are not include
in Fig. 2C. The deviations are still substantial, at least for so
residues. As a consequence, the use of the isotropic suscep
ity model in the context of differential linewidths applied as
structural constraint may lead to some systematic errors.

4. CONCLUSIONS

A general theoretical treatment has been developed her
account for cross-correlated relaxation caused by interfere
between nuclear dipole–dipole interaction and the Curie s
relaxation (DD–CSR cross correlation) in the presence of m
netic anisotropy of any origin. The main finding is that the DD
CSR cross correlation in a given magnetically anisotropic s
tem is equally strong independently of the origin of magne
anisotropy. A consequence of this finding is that lanthanide io
whose anisotropy arises mostly from zero-field splitting effec
are expected to yield substantial DD–CSR cross correlation
variance with previous predictions. This conclusion is part
ularly relevant in view of the growing interest in the use
lanthanide ions as paramagnetic substitutes for calcium ion
calcium-binding proteins.

Sample calculations based on the known magnetic proper
of a cerium(III)-substituted calcium-binding protein show th
(i) the DD–CSR cross-correlation effect is predicted to be r
evant and (ii) the additional perturbation due to the magne
anisotropy is not negligible when DD–CSR cross-correlati
data are to be used for quantitative purposes.

APPENDIX

Consider the case when there is only one metal center
the electron spin Hamiltonian contains both the Zeeman and
ZFS interaction:

H = µBS · g · B0+ S · D · S. [A1]

If the ZFS vanishes, then the eigenstates become the u
Zeeman eigenstates,|S,mS〉, and the quantization axis of the
electron spin is the laboratoryz axis, defined by the direction
of the magnetic field. If the Zeeman interaction vanishes (at
limit of zero magnetic field), the eigenstates of the ZFS Ham
tonian can still be labeled with themS quantum number, but this
refers now to the projection of the spin on a molecule-fixed ax

which acts as a quantization axis. We denote the eigenstates
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of the ZFS Hamiltonian|Ŝ, m̂S〉. An important feature of the
ZFS Hamiltonian is that the±m̂S states are degenerate. Thu
the expectation value of̂Sz for a |Ŝ, m̂S〉 state ism̂S, but when
summing over equilibrium populations of the ZFS-split leve
the contributions of pairs of degenerate levels cancel exactl
other words, the ZFS does not lead to any permanent mag
moment.

The Hamiltonian in Eq. [A1] mixes the Zeeman and Z
eigenstates. The expectation value ofSz (in the laboratory
frame), averaged over thermally populated levels, is given b

〈Sz〉 =
∑

j 〈Sz, j 〉e−Ej /kT∑
j e−Ej /kT

, [A2]

where j labels the 2S+ 1 eigenstates of the Hamiltonian. Th
expectation value is not identical to the Zeeman-only ca
〈Sz〉 = −geµBS(S+ 1)B0/3kT, because the ZFS may displa
the relative energies of different±mS doublets.〈Sz〉 is related
to the magnetic susceptibility by (39)

χ = −geµ0µB

B0
〈Sz〉. [A3]

Desvaux and Gochin state in their paper (35) that if the ZFS
dominates over the Zeeman interaction, then the cross-time
relation function between theAK dipolar interaction and the
Curie spin vanishes because of the fact that theSspin is locked
in the molecular frame, which leads to a product of the Wig
rotation matrices of different ranks. While this is true at the lim
of zero magnetic field, it is not true if the magnetic field is prese
If the field is present, then there will be a nonzero〈Sz〉 along
the field direction, given by Eq. [A2], whose interaction wi
the nuclear spin is modulated by rotation of the molecules
similar way as in the Zeeman-only case and, assuming isotr
reorientation, in the same way as theAKdipolar interaction. This
argument leads, after some straightforward algebra, to Eq
for the differential linewidth due to DD–CSR cross correlatio
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